
Polytechnic University of Turin
Master of Science in Computer Engineering

Database Management Systems’
second homework

Marco Micera
Academic Year 2017-2018

Contents

1 First exercise 2
1.1 Exercise text: ”Switching on/off the phone” 2
1.2 Trigger design . 2

1.2.1 Event . 2
1.2.2 Execution semantics . 2
1.2.3 Conditions . 2
1.2.4 Actions . 2

1.3 Active Phone trigger code . 2
1.4 Off Phone trigger code . 3
1.5 Trigger testing . 4

2 Second exercise 6
2.1 Exercise text: ”Starting a phone call” 6
2.2 Trigger design . 6

2.2.1 Event . 6
2.2.2 Execution semantics . 6
2.2.3 Condition . 6
2.2.4 Actions . 6

2.3 Phone Call Start trigger code 6
2.4 Trigger testing . 8

3 Third exercise 10
3.1 Exercise text: ”Changing the maximum number of active calls” . 10
3.2 Trigger design . 10

3.2.1 Event . 10
3.2.2 Execution semantics . 10
3.2.3 Condition . 10
3.2.4 Actions . 10

3.3 Max Calls Decrease trigger code 11
3.4 Trigger testing . 11

4 Fourth exercise 12
4.1 Exercise text: ”Service guarantee” 12
4.2 Trigger design . 12

4.2.1 Event . 12
4.2.2 Execution semantics . 12
4.2.3 Condition . 12
4.2.4 Actions . 12

4.3 Service Guarantee trigger code 12
4.4 Trigger testing . 13

1

1 First exercise

1.1 Exercise text: ”Switching on/off the phone”

(Insertion in the STATE CHANGE table)
The change types are ’O’ (on) and ’F’ (off). When the phone is switched
on, the corresponding information is stored in the TELEPHONE table. When it
is switched off, the information should be removed. Furthermore, the cell to
which the phone belongs should be identified and the current number of phones
should be modified accordingly.

1.2 Trigger design

The trigger will be divided in two parts: one for the switching on action, and
the other one for the switching off action, respectively called Active Phone and
Off Phone as suggested by the exercise.

1.2.1 Event

• Insert on table STATE CHANGE

1.2.2 Execution semantics

• Execution mode: AFTER the modification (for both triggers)

• Granularity: row level, each tuple is modified separately (for both triggers)

1.2.3 Conditions

• New tuple has attribute ChangeType = ’O’ (for the Active Phone trig-
ger)

• New tuple has attribute ChangeType = ’F’ (for the Off Phone trigger)

1.2.4 Actions

1. Retrieve the possible CellId in which the telephone is in

2. Insert (delete) the corresponding row in the TELEPHONE table for the
switched on (off) phone

3. If the phone is located within a cell, increase (or decrease, accordingly)
the number of phones in it (CurrentPhone# attribute in the CELL table)

1.3 Active Phone trigger code

CREATE OR REPLACE TRIGGER Active_Phone

AFTER INSERT ON STATE_CHANGE FOR EACH ROW

WHEN (NEW.ChangeType = 'O')

DECLARE

-- The possible cell in which the phone is into

BelongingCell NUMBER(38, 0);

BEGIN

2

BEGIN

-- Retrieving the possible cell in which the phone is into

SELECT CellId INTO BelongingCell

FROM CELL

WHERE :NEW.x < x1 AND :NEW.x >= x0

AND :NEW.y < y1 AND :NEW.y >= y0;

-- If the phone is outside any cell

EXCEPTION WHEN NO_DATA_FOUND THEN

-- No cell info will be then updated

BelongingCell := NULL;

END;

-- The corresponding information is stored in the TELEPHONE table

INSERT INTO TELEPHONE(PhoneNo, x, y, PhoneState)

VALUES (:NEW.PhoneNo, :NEW.x, :NEW.y, 'On');

-- If the phone is in a cell

IF(BelongingCell IS NOT NULL) THEN

-- the number of phones in the corresponding cell is increased

UPDATE CELL

SET CurrentPhone# = CurrentPhone# + 1

WHERE CellId = BelongingCell;

END IF;

END;

1.4 Off Phone trigger code

CREATE OR REPLACE TRIGGER Off_Phone

AFTER INSERT ON STATE_CHANGE FOR EACH ROW

WHEN (NEW.ChangeType = 'F')

DECLARE

-- The possible cell in which the phone is into

BelongingCell NUMBER(38, 0);

BEGIN

BEGIN

-- Retrieving the possible cell in which the phone is into

SELECT CellId INTO BelongingCell

FROM CELL

WHERE :NEW.x < x1 AND :NEW.x >= x0

AND :NEW.y < y1 AND :NEW.y >= y0;

-- If the phone is outside any cell

EXCEPTION WHEN NO_DATA_FOUND THEN

-- No cell info will be then updated

BelongingCell := NULL;

END;

-- The corresponding phone record is removed

DELETE FROM TELEPHONE WHERE PhoneNo = :NEW.PhoneNo;

3

-- If the phone was in a cell

IF(BelongingCell IS NOT NULL) THEN

-- the number of phones in the corresponding cell is decreased

UPDATE CELL

SET CurrentPhone# = CurrentPhone# - 1

WHERE CellId = BelongingCell;

END IF;

END;

1.5 Trigger testing

Initially, the given database has all empty tables except for the CELL table,
which has the following entries:

After the execution of:

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (1, sysdate, '333000010', 3, 3, 'O');

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (2, sysdate, '333000009', 15, 15, 'O');

Two rows will be inserted in the STATE CHANGE table:

As well as two new entries in the TELEPHONE table:

The number of current phones (CurrentPhone# in the CELL table) in each
cell is modified as follows:

4

After the execution of:

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (3, sysdate, '333000009', 15, 15, 'F');

Another row will be inserted in the STATE CHANGE table:

Causing the elimination of the corresponding entry in the TELEPHONE table:

The number of current phones in the corresponding CELL entry decreases by
1 unit:

5

2 Second exercise

2.1 Exercise text: ”Starting a phone call”

(Insertion in the STATE CHANGE table)
The change type is ’C’. If the cell in which the phone is located does not exceed
the maximum number of calls it can manage (MaxCalls attribute), the phone
state should become ’Active’. If instead the cell exceeds the maximum call
number, the phone call cannot be initiated. In this case, the information on the
exception should be inserted in the EXCEPTION LOG table. The ExId attribute
is a counter, which is unique for a given cell.

2.2 Trigger design

2.2.1 Event

• Insert on table STATE CHANGE

2.2.2 Execution semantics

• Execution mode: AFTER the modification

• Granularity: row level, each tuple is modified separately

2.2.3 Condition

• New tuple has attribute ChangeType = ’C’

2.2.4 Actions

1. Retrieve the possible CellId in which the telephone is in

2. If the telephone is in a cell:

(a) Retrieve the cell’s capacity in terms of the maximum supported num-
ber of active phone calls at the same time (MaxCalls attribute in the
CELL table) and its vertexes

(b) Retrieve the number of active phone calls in the cell

(c) If the new call exceeds the cell’s capacity, insert a row in the EXCEPTION LOG

table, after computing its ExID; otherwise, set the corresponding
PhoneState attribute in the TELEPHONE table to ’Active’

2.3 Phone Call Start trigger code

CREATE OR REPLACE TRIGGER Phone_Call_Start

AFTER INSERT ON STATE_CHANGE FOR EACH ROW

WHEN (NEW.ChangeType = 'C')

DECLARE

-- The possible cell in which the phone is into

BelongingCell NUMBER(38, 0);

-- Cell's vertexes

6

cellX0 DECIMAL(7, 2);

cellY0 DECIMAL(7, 2);

cellX1 DECIMAL(7, 2);

cellY1 DECIMAL(7, 2);

-- Maximum number of calls of the interested cell

CellCallCapacity SMALLINT;

-- Number of phones calling in the same cell

ConcurrentCalls NUMBER;

-- In case of exception, ID to be used

NextExceptionId INTEGER;

BEGIN

BEGIN

-- Retrieving the possible cell in which the phone is into

SELECT CellId INTO BelongingCell

FROM CELL

WHERE :NEW.x < x1 AND :NEW.x >= x0

AND :NEW.y < y1 AND :NEW.y >= y0;

-- If the phone is outside any cell

EXCEPTION WHEN NO_DATA_FOUND THEN

-- No cell info will be then updated

BelongingCell := NULL;

END;

-- Checking if the phone is in a cell

IF(BelongingCell IS NOT NULL) THEN

-- Retrieving:

---- The max number of calls in the cell

---- Cell's vertexes

SELECT MaxCalls, x0, y0, x1, y1

INTO CellCallCapacity, cellX0, cellY0, cellX1, cellY1

FROM CELL

WHERE CellId = BelongingCell;

-- Retrieving the number of phones calling in the cell

SELECT COUNT(*) INTO ConcurrentCalls

FROM TELEPHONE

WHERE PhoneState = 'Active'

AND x < cellX1 AND x >= cellX0

AND y < cellY1 AND y >= cellY0;

-- The cell can manage this call

IF(ConcurrentCalls + 1 <= CellCallCapacity) THEN

-- Setting the phone's state to Active

UPDATE TELEPHONE

SET PhoneState = 'Active'

WHERE PhoneNo = :NEW.PhoneNo;

7

-- The call exceeds the cell's capacity

ELSE

-- Calculating the new exception ID

SELECT MAX(ExID) + 1 INTO NextExceptionId

FROM EXCEPTION_LOG

WHERE CellId = BelongingCell;

-- If it's the first exception for this cell

IF(NextExceptionId IS NULL) THEN

-- No cell info will be then updated

NextExceptionId := 1;

END IF;

-- Inserting an exception in the log table

INSERT INTO EXCEPTION_LOG(ExId, CellId, ExceptionType)

VALUES (NextExceptionId, BelongingCell, 'C');

END IF;

END IF;

END;

2.4 Trigger testing

After the execution of:

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (4, sysdate, '333000001', 3, 3, 'O');

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (6, sysdate, '333000004', 5, 5, 'O');

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (7, sysdate, '333000004', 5, 5, 'C');

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (8, sysdate, '333000001', 3, 3, 'C');

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (9, sysdate, '333000010', 3, 3, 'C');

there will be 3 active phones in cell 1:

which has a maximum active call capacity of 3.

8

Upon inserting these two rows in the STATE CHANGE table:

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (10, sysdate, '333000020', 4, 4, 'O');

INSERT INTO STATE_CHANGE(ChangeId, TimeStamp, PhoneNo, x, y, ChangeType)

VALUES (11, sysdate, '333000020', 4, 4, 'C');

a new phone is inserted in the TELEPHONE table:

Notice that this phone is not in the ’Active’ state, since the first cell has
already the maximum number of phone calls going on. Hence, a new row in
EXCEPTION LOG has been inserted, with type ’C’, indicating a concurrent phone
call overflow.

Of course, all the previous STATE CHANGE rows have been inserted in the
table, making the latter as follows:

9

3 Third exercise

3.1 Exercise text: ”Changing the maximum number of
active calls”

(Update of MaxCalls in the CELL table)
The maximum number of active calls related to a single cell may be reduced
by the cellular phone network for managing issues (decrease of the MaxCalls

value in the CELL table). The update on the MaxCalls attribute for a sin-
gle cell could cause an inconsistent situation in which the MaxCalls value in
the CELL table becomes smaller than the number of currently Active phones
(PhoneState=’Active’) in the considered cell. If so, the corresponding MaxCalls

attribute needs to be updated with the number of currently Active phones
(PhoneState=’Active’) in the considered cell.

3.2 Trigger design

3.2.1 Event

• Update of MaxCalls in the CELL table

3.2.2 Execution semantics

• Execution mode: BEFORE the modification, to modify the MaxCalls value
before the event takes place

• Granularity: row level, each tuple is modified separately

3.2.3 Condition

• The MaxCalls value is decreased

3.2.4 Actions

1. Retrieve the number of active phone calls in the cell

2. If the new MaxCalls value is less than the number of active phone calls in
the cell:

(a) Set the new MaxCalls value equal to the number of active phone calls
in the cell

10

3.3 Max Calls Decrease trigger code

CREATE OR REPLACE TRIGGER Max_Calls_Decrease

BEFORE UPDATE OF MaxCalls ON CELL FOR EACH ROW

WHEN (NEW.MaxCalls < OLD.MaxCalls)

DECLARE

ActiveCallsInCell NUMBER;

BEGIN

-- Retrieving the number of phones calling in the cell

SELECT COUNT(*) INTO ActiveCallsInCell

FROM TELEPHONE

WHERE PhoneState = 'Active'

AND x < :NEW.x1 AND x >= :NEW.x0

AND y < :NEW.y1 AND y >= :NEW.y0;

-- If the update is inconsistent

IF(ActiveCallsInCell > :NEW.MaxCalls) THEN

:NEW.MaxCalls := ActiveCallsInCell;

END IF;

END;

3.4 Trigger testing

The initial CELL table state is reported below:

After the execution of:

UPDATE CELL SET MaxCalls = MaxCalls-2;

All rows will be update accordingly, except for cell 1, that already has 3 active
phone calls in it and decreasing the MaxCalls attribute from 3 to 1 would bring
the table in an inconsistent state: this is why the trigger takes action, and sets
the latter to the number of active phone calls (3):

11

4 Fourth exercise

4.1 Exercise text: ”Service guarantee”

(Update of MaxCalls in the CELL table)
The cellular phone network administrator needs to guarantee a minimum level
service. In particular, the maximum number of active calls, by considering all
cells of the network, needs to be always greater than 30. Thus, updates on
the MaxCalls attribute in the CELL table must always satisfy the constraint.
When an update instruction on MaxCalls attribute in the CELL table does not
satisfy this constraint, the trigger will raise an application error to disallow the
instruction that activates the trigger.

4.2 Trigger design

4.2.1 Event

• Update of MaxCalls in the CELL table

4.2.2 Execution semantics

• Execution mode: AFTER the modification

• Granularity: to capture the effect on the entire modification

4.2.3 Condition

• No condition, the trigger fires every time

4.2.4 Actions

1. Compute the total amount of guaranteed phone calls in the network

2. Prevent any MaxCalls modification that violates the constraint

4.3 Service Guarantee trigger code

CREATE OR REPLACE TRIGGER Service_Guarantee

AFTER UPDATE OF MaxCalls ON CELL

DECLARE

TotalMaxCalls INTEGER;

BEGIN

SELECT SUM(MaxCalls) INTO TotalMaxCalls

FROM CELL;

IF(TotalMaxCalls < 30) THEN

raise_application_error(

-20514,

'The overall network should guarantee at least 30 calls'

);

END IF;

END;

12

4.4 Trigger testing

The initial CELL table state is reported below:

After the execution of:

UPDATE CELL SET MaxCalls = MaxCalls-1;

the Service Guarantee trigger won’t prevent the operation as the total
amount of guaranteed phone calls over the network remains greater than 30:

Notice that the first cell’s MaxCalls value didn’t drop from 3 to 2, as the
Max Calls Decrease trigger prevented this kind of operation.

This time, after the execution of:

UPDATE CELL SET MaxCalls = MaxCalls-10;

the Service Guarantee trigger does prevent the operation as the total amount
of guaranteed phone calls over the network would drop to 24. The trigger will
then raise an application error:

and the CELL table does not get modified.

13

	Blank Page
	Blank Page

